📐 Algebra Formulas

Quadratic Equations

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$$

For equations of the form $ax^2 + bx + c = 0$

Example: $x^2 - 5x + 6 = 0$ → $x = 2, 3$

Discriminant

$$D = b^2 - 4ac$$

Determines nature of roots: D > 0 (two real), D = 0 (one real), D < 0 (complex)

Vertex Form

$$y = a(x-h)^2 + k$$

Vertex at point $(h, k)$

Exponents & Logarithms

Exponent Rules

$a^m \cdot a^n = a^{m+n}$

$(a^m)^n = a^{mn}$

$\frac{a^m}{a^n} = a^{m-n}$

$a^0 = 1$ (when $a \neq 0$)

Logarithm Properties

$\log_a(xy) = \log_a x + \log_a y$

$\log_a(\frac{x}{y}) = \log_a x - \log_a y$

$\log_a(x^n) = n\log_a x$

$\log_a a = 1$

🔺 Geometry Formulas

Area Formulas

Triangle

$$A = \frac{1}{2}bh$$

Where $b$ = base, $h$ = height

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

Heron's formula: $s = \frac{a+b+c}{2}$

Circle

$$A = \pi r^2$$

$$C = 2\pi r$$

Where $r$ = radius, $C$ = circumference

Rectangle & Square

$$A_{rectangle} = lw$$

$$A_{square} = s^2$$

$l$ = length, $w$ = width, $s$ = side

Volume Formulas

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$SA = 4\pi r^2$$

Cylinder

$$V = \pi r^2 h$$

$$SA = 2\pi r^2 + 2\pi rh$$

Cone

$$V = \frac{1}{3}\pi r^2 h$$

$$SA = \pi r^2 + \pi rl$$

$l$ = slant height

Coordinate Geometry

Distance Formula

$$d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

Midpoint Formula

$$M = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

Slope Formula

$$m = \frac{y_2-y_1}{x_2-x_1}$$

🌊 Trigonometry Formulas

Basic Trigonometric Functions

Basic Ratios

$\sin \theta = \frac{opposite}{hypotenuse}$

$\cos \theta = \frac{adjacent}{hypotenuse}$

$\tan \theta = \frac{opposite}{adjacent}$

Pythagorean Identity

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Law of Sines

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Law of Cosines

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Angle Addition Formulas

Sine Addition

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

Cosine Addition

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

Double Angle

$\sin 2\theta = 2\sin \theta \cos \theta$

$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$

📈 Calculus Formulas

Derivatives

Power Rule

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

Product Rule

$$\frac{d}{dx}[uv] = u'v + uv'$$

Quotient Rule

$$\frac{d}{dx}\left[\frac{u}{v}\right] = \frac{u'v - uv'}{v^2}$$

Chain Rule

$$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$$

Common Derivatives

Trigonometric

$\frac{d}{dx}[\sin x] = \cos x$

$\frac{d}{dx}[\cos x] = -\sin x$

$\frac{d}{dx}[\tan x] = \sec^2 x$

Exponential & Logarithmic

$\frac{d}{dx}[e^x] = e^x$

$\frac{d}{dx}[\ln x] = \frac{1}{x}$

$\frac{d}{dx}[a^x] = a^x \ln a$

Integration

Power Rule for Integration

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

(when $n \neq -1$)

Fundamental Theorem

$$\int_a^b f(x)dx = F(b) - F(a)$$

where $F'(x) = f(x)$

📊 Statistics Formulas

Descriptive Statistics

Mean

$$\bar{x} = \frac{\sum x_i}{n}$$

Standard Deviation

$$s = \sqrt{\frac{\sum(x_i - \bar{x})^2}{n-1}}$$

Variance

$$s^2 = \frac{\sum(x_i - \bar{x})^2}{n-1}$$

Probability

Combination

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

Permutation

$$P(n,r) = \frac{n!}{(n-r)!}$$

Normal Distribution

$$Z = \frac{x - \mu}{\sigma}$$

Z-score formula