Derivative Calculator
Calculate Derivative
Enter a function to differentiate with respect to x
Quick examples:
Differentiation Rules
Power Rule
$\frac{d}{dx}[x^n] = nx^{n-1}$
$\frac{d}{dx}[x^3] = 3x^2$
Constant Rule
$\frac{d}{dx}[c] = 0$
$\frac{d}{dx}[5] = 0$
Sum Rule
$\frac{d}{dx}[f + g] = f' + g'$
$\frac{d}{dx}[x^2 + x] = 2x + 1$
Product Rule
$\frac{d}{dx}[fg] = f'g + fg'$
$\frac{d}{dx}[x \sin x] = \sin x + x\cos x$
Quotient Rule
$\frac{d}{dx}[\frac{f}{g}] = \frac{f'g - fg'}{g^2}$
$\frac{d}{dx}[\frac{x}{x+1}] = \frac{1}{(x+1)^2}$
Chain Rule
$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$
$\frac{d}{dx}[\sin(2x)] = 2\cos(2x)$
Common Derivatives
Trigonometric Functions
| $\frac{d}{dx}[\sin x]$ | $= \cos x$ |
| $\frac{d}{dx}[\cos x]$ | $= -\sin x$ |
| $\frac{d}{dx}[\tan x]$ | $= \sec^2 x$ |
| $\frac{d}{dx}[\sec x]$ | $= \sec x \tan x$ |
| $\frac{d}{dx}[\csc x]$ | $= -\csc x \cot x$ |
| $\frac{d}{dx}[\cot x]$ | $= -\csc^2 x$ |
Exponential & Logarithmic
| $\frac{d}{dx}[e^x]$ | $= e^x$ |
| $\frac{d}{dx}[a^x]$ | $= a^x \ln a$ |
| $\frac{d}{dx}[\ln x]$ | $= \frac{1}{x}$ |
| $\frac{d}{dx}[\log_a x]$ | $= \frac{1}{x \ln a}$ |
Inverse Trig Functions
| $\frac{d}{dx}[\arcsin x]$ | $= \frac{1}{\sqrt{1-x^2}}$ |
| $\frac{d}{dx}[\arccos x]$ | $= -\frac{1}{\sqrt{1-x^2}}$ |
| $\frac{d}{dx}[\arctan x]$ | $= \frac{1}{1+x^2}$ |
Worked Examples
Example 1: Power Rule
Find the derivative of $f(x) = 3x^4 - 2x^2 + 5x - 7$
Apply the power rule to each term:
$f'(x) = \frac{d}{dx}[3x^4] - \frac{d}{dx}[2x^2] + \frac{d}{dx}[5x] - \frac{d}{dx}[7]$
$f'(x) = 3 \cdot 4x^3 - 2 \cdot 2x + 5 \cdot 1 - 0$
$f'(x) = 12x^3 - 4x + 5$
Example 2: Product Rule
Find the derivative of $f(x) = x^2 \sin x$
Let $u = x^2$ and $v = \sin x$
Then $u' = 2x$ and $v' = \cos x$
Using product rule: $f'(x) = u'v + uv'$
$f'(x) = 2x \sin x + x^2 \cos x$
Example 3: Chain Rule
Find the derivative of $f(x) = (3x + 2)^5$
Let $u = 3x + 2$, then $f(x) = u^5$
$\frac{df}{du} = 5u^4$ and $\frac{du}{dx} = 3$
By chain rule: $\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$
$f'(x) = 5(3x + 2)^4 \cdot 3 = 15(3x + 2)^4$
Practice Problems
- Find $\frac{d}{dx}[x^5 - 3x^3 + 2x]$
- Find $\frac{d}{dx}[e^x \cos x]$
- Find $\frac{d}{dx}[\frac{x^2}{x+1}]$
- Find $\frac{d}{dx}[\ln(x^2 + 1)]$
- Find $\frac{d}{dx}[\sin^2 x]$
- Find $\frac{d}{dx}[\sqrt{x^2 + 4}]$
Show Answers
- $5x^4 - 9x^2 + 2$
- $e^x \cos x - e^x \sin x$
- $\frac{x^2 + 2x}{(x+1)^2}$
- $\frac{2x}{x^2 + 1}$
- $2\sin x \cos x$
- $\frac{x}{\sqrt{x^2 + 4}}$